If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=21800
We move all terms to the left:
X^2+X^2-(21800)=0
We add all the numbers together, and all the variables
2X^2-21800=0
a = 2; b = 0; c = -21800;
Δ = b2-4ac
Δ = 02-4·2·(-21800)
Δ = 174400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{174400}=\sqrt{1600*109}=\sqrt{1600}*\sqrt{109}=40\sqrt{109}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{109}}{2*2}=\frac{0-40\sqrt{109}}{4} =-\frac{40\sqrt{109}}{4} =-10\sqrt{109} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{109}}{2*2}=\frac{0+40\sqrt{109}}{4} =\frac{40\sqrt{109}}{4} =10\sqrt{109} $
| 2n+3=112 | | z/12=4/5 | | 9x+4x-4=3x | | 7/8(-32-48x)+36=2/3(−33x−18)−10x | | 3/8x-6=(-12) | | 29b=-638 | | 6-4(m-5)=-8+10 | | 9x+27=2(4x-7)+10 | | 2d+2d=20 | | X2+y2=21800 | | 3=27-8y7 | | 25-1/5x35=18 | | 12x+12=-6+14x | | 7/3x-1=x/2x+1 | | 0.6x+0.5x=11 | | 2x-2=4-6x | | x-x-2=2 | | 6=x+2÷3 | | 121+x+x+71=180 | | 1v+5+6v=1+5v+3 | | 8h-3h=15 | | (X-5)^2-4(x-5)-21=0 | | 8-42x=-32x-12 | | 304=19r | | 6/k=3/4 | | 9x-11=5x+20 | | 12x+6=-42 | | 9x+22=11x-2 | | 6k=34 | | 3÷5x-15=6÷5x+12 | | 13t–9t=16 | | 2x+9=5x-10 |